Tuesday, November 5, 2013

Instinct Gone Awry: On Traffic Jams, Distracted Behavior and the Myth of MultiTasking

One of the most fascinating non-fiction books I have read in recent years was called, Traffic by Tom Vanderbilt. The book breaks down a number of behaviors that seem completely natural for creatures that developed over thousand of years, but that can be non-sensical when in control of a few tons of metal and plastic travelling 10 times faster than a normal person can run. This basic juxtaposition comes up again and again in the book: naturally evolved intuitive reactions do not always make sense behind the wheel of a car.

I have been thinking about that book and how it applies to the teaching of technology in schools, both with students and in the context of professional development with teachers.


Put simply, our natural inclinations may be wrong.


Interlude: The Data Dilemma
Our school suffered a catastrophic data loss this spring. It was one of those two-fold, perfect storm type disasters that had multiple causes both human and structural. The end result was that a number of teachers and administrators lost data permanently. It was a blow to the tech department and the trust we had built up over the years.


Flash forward five months. A teacher brings in his laptop that is no longer opening files. Long-story and much investigation later, we were able to find a crypto-locker virus on his computer that had been given permission to bypass our virus screening by the user. This particularly nasty ransom-ware encrypts files and then offers to unlock them for a payment of a few hundred dollars worth of bit-coin.


  • Me: “I think our best bet is to pull your files from backup. Did you have everything on the [School home drive]?”
  • Teacher: “No. After what happened, i don’t use that anymore.”
  • Me: “Not a problem. Where are you backing up files?”
  • Teacher: “I keep them on the computer. So they are close to me and safe.”
End Interlude


This teacher’s reaction was completely natural, completely animalistic. It is the same reaction we have regarding our children: Keep them close; keep them where we can see them. All will be well.


But in the world of data, the safest thing to do is to put copies of that data in as many places as possible, as far apart as possible, so that one or two mistakes or disasters do not cause loss of important information.


In the world of educational technology, we are not just fighting against the ignorance of “...but I didn’t know”. Sometimes, we are battling instinct and that is a much more ingrained adversary.

Which bring us to the focus of today's blog (yeah, its one of those long ones!):


Interlude: The Distraction Dilemma
While teaching a summer school #digcit class, students were given time to work independently to gather research. I became fascinated watching one girl work on her assignment while checking her phone. In a ten-minute period, she looked at her phone 18 times. Each time was less than 10 seconds, many times under 5.


Me: “Did you know that you are constantly looking at your phone?”
Student: “Not constantly...just when i get a message. I am still working”
Me: “Show me what you have done so far”
Student: “Well, I am taking notes on this webpage.”
Me: “Show me the notes.”
Student: “I just started, so I don’t have much yet.”
Me: You started that document over 10 minutes ago. You haven’t moved the screen past the first paragraph and only have 14 words typed on your notes.”
Student: “Ten minutes? No way!”
End Interlude


On the ancient plains, it was important to be able to quick-glance our environment. To stop eating or caring for the young and take a quick survey for predators. But this comfort in an ability to quickly disengage from a primary task, instinctively survey (a secondary task), and return to the primary  task at hand is VERY different from engaging in two cognitive tasks like RESEARCHING and carrying-on a time-delayed, written CONVERSATION. Put simply, human beings are bad at it. Worse, we don’t realize it:


We - the people we talk with continually said, look, when I really have to concentrate, I turn off everything and I am laser-focused. And unfortunately, they've developed habits of mind that make it impossible for them to be laser-focused. They're suckers for irrelevancy. They just can't keep on task.
- Dr. Clifford Nass, Professor of Communication at Stanford.  NPR Interview


Dr. Nass wins awesome title award
Nass continues, explaining that as the number of screens increase, we maintain a belief that we can handle the attention spread of an increasing amount of data and distraction. “There's some evidence that there's a very, very, very, very small group of people who can do two tasks at one time but there's actually no evidence that anyone can do even three.”


As teachers and technologists, part of our job is to help students develop the skills and habits of mind that they will need to survive and thrive in a world where instinct can lead them astray. As with all education that matters, this can be done with a combination of setting context, gaining experience, and promoting reflection that leads to change and action.



1. Setting Context:
As part of our professional development focus on distracted behavior, we had each adult keep a distraction journal over the weekend. Adults by and large were shocked at the amount of distracted behavior they found in themselves, analogous with the student who had no idea how much time she spend on a one screen vs. another. This personal context can be supplemented with reading research (or summaries of research, depending on the age level) so that students know this is not just the old folks complaining about the young whippersnappers and the gadgets and what not.


2. Providing Experience:
Much of this discussion will ultimately come down to whether students who have been immersed in multi-screen worlds find value in focusing their attention on one screen or, at minimum, one cognitive task at a time. Part of the development of this habit of mind will come down to a lived experience. This can take the form of neurophysiology games played in the classroom, such as this example from an NEA Article:

Remove the face cards from a standard deck and select 15–20 random numbered cards. Have your subject mentally add the black cards and subtract the red cards from a running subtotal as quickly as possible, while being timed.  (Younger students simply may add all card values.) Next, call off a list of 15–20 random alphabetic characters while the subject mentally keeps track of the number of vowels recited, while being timed.  Then add the times of both exercises.Finally, repeat the first experiment, but this time interrupt the subject’s addition periodically with recited alphabetic characters, while the student attempts to keep track of both results simultaneously.  Odds are that the final experiment will take measurably longer than each exercise conducted individually.  (It is likely that the final experiment will yield fewer correct answers, besides.) - NEA


3. Reflection and Action:
At the point that the context and experience have made an argument for single-tasking, the teacher (and parents) should be ready with some concrete suggestions about how this can be accomplished without setting the world on fire (or you know, not texting your friends, which can be the same thing emotionally).
  • Design study time around focused time and texting breaks. Research is showing that undistracted learning yields better long-term and more adaptable use of knowledge. Thus 20 minutes of concentrated studying (TV off, phone on silent) followed by 10 minutes of un-interrupted texting or pinning, should yield more efficient results than a half-hour of study and text. Done as a non-threatening experiment at the high-school and middle school level has yielded good discussion and reflection -- and even some changes in habits.
  • Work on following suggestions from the American Association of Pediatrics. There was a lot of buzz last week when the AAP released recommendations for limits on screen time, but the two strongest suggestions for families were: -- limit recreational screen time to two hours a day (this would be about a 75% reduction for the average teen). --create screen-free zones, especially in teen-and-under bedrooms to promote uninterrupted sleep. 
  • Model. Ultimately, it is difficult to advocate a focused or multi-input single-tasking while working on three different projects on two or more screens. Teenagers see through the artifice and, perhaps more importantly, there is no evidence at this point that the problem gets better with age.



Technology is a game changer.

  • It has increased the speed of our lives beyond what we are naturally able to cope.
  • It has increased the amount of data available to us in general and at any given moment
  • It has increased our need for awareness of our own habits and our instinctive reactions to the world around us.


But to shun technology entirely is not going to better prepare our students for a life of Google Glass and self-driving cars. Better to understand where our instincts will conflict with reality and where we must develop new habits and new skills.

Nass explains that the brain is plastic -- malleable and able to change, adapting as best as possible to a multi-cognitive world. But it is not elastic. Once neural habits are formed they can be very hard to change. We should begin the dialogue and the practice of screen-control young and reinforce it at home and school, training the brain to control the screens and not training it to barely keep its attention-deprived head above the distracted waters.